publications
more to come soon.
- Jul 2021
Paper Abstract
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the “Rashomon set” of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning
- Oct 2022
Paper Abstract
In any given machine learning problem, there might be many models that explain the data almost equally well. However, most learning algorithms return only one of these models, leaving practitioners with no practical way to explore alternative models that might have desirable properties beyond what could be expressed by a loss function. The Rashomon set is the set of these all almost-optimal models. Rashomon sets can be large in size and complicated in structure, particularly for highly nonlinear function classes that allow complex interaction terms, such as decision trees. We provide the first technique for completely enumerating the Rashomon set for sparse decision trees; in fact, our work provides the first complete enumeration of any Rashomon set for a non-trivial problem with a highly nonlinear discrete function class. This allows the user an unprecedented level of control over model choice among all models that are approximately equally good. We represent the Rashomon set in a specialized data structure that supports efficient querying and sampling. We show three applications of the Rashomon set: 1) it can be used to study variable importance for the set of almost-optimal trees (as opposed to a single tree), 2) the Rashomon set for accuracy enables enumeration of the Rashomon sets for balanced accuracy and F1-score, and 3) the Rashomon set for a full dataset can be used to produce Rashomon sets constructed with only subsets of the data set. Thus, we are able to examine Rashomon sets across problems with a new lens, enabling users to choose models rather than be at the mercy of an algorithm that produces only a single model.
- Nov 2022
Paper Abstract
Decision tree optimization is notoriously difficult from a computational perspective but essential for the field of interpretable machine learning. Despite efforts over the past 40 years, only recently have optimization breakthroughs been made that have allowed practical algorithms to find optimal decision trees. These new techniques have the potential to trigger a paradigm shift where it is possible to construct sparse decision trees to efficiently optimize a variety of objective functions without relying on greedy splitting and pruning heuristics that often lead to suboptimal solutions. The contribution in this work is to provide a general framework for decision tree optimization that addresses the two significant open problems in the area: treatment of imbalanced data and fully optimizing over continuous variables. We present techniques that produce optimal decision trees over a variety of objectives including F-score, AUC, and partial area under the ROC convex hull. We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables and speeds up decision tree construction by several orders of magnitude relative to the stateof-the art.
- Jul 2022
Paper Abstract
Sparse decision tree optimization has been one of the most fundamental problems in AI since its inception and is a challenge at the core of interpretable machine learning. Sparse decision tree optimization is computationally hard, and despite steady effort since the 1960’s, breakthroughs have been made on the problem only within the past few years, primarily on the problem of finding optimal sparse decision trees. However, current state-of-the-art algorithms often require impractical amounts of computation time and memory to find optimal or near-optimal trees for some real-world datasets, particularly those having several continuous-valued features. Given that the search spaces of these decision tree optimization problems are massive, can we practically hope to find a sparse decision tree that competes in accuracy with a black box machine learning model? We address this problem via smart guessing strategies that can be applied to any optimal branch-and-bound-based decision tree algorithm. The guesses come from knowledge gleaned from black box models. We show that by using these guesses, we can reduce the run time by multiple orders of magnitude while providing bounds on how far the resulting trees can deviate from the black box’s accuracy and expressive power. Our approach enables guesses about how to bin continuous features, the size of the tree, and lower bounds on the error for the optimal decision tree. Our experiments show that in many cases we can rapidly construct sparse decision trees that match the accuracy of black box models. To summarize: when you are having trouble optimizing, just guess.
- Nov 2000
Paper Abstract
Parallel, multithreaded C and C++ programs such as web servers, database managers, news servers, and scientific applications are becoming increasingly prevalent. For these applications, the memory allocator is often a bottleneck that severely limits program performance and scalability on multiprocessor systems. Previous allocators suffer from problems that include poor performance and scalability, and heap organizations that introduce false sharing. Worse, many allocators exhibit a dramatic increase in memory consumption when confronted with a producer-consumer pattern of object allocation and freeing. This increase in memory consumption can range from a factor of P (the number of processors) to unbounded memory consumption. This paper introduces Hoard, a fast, highly scalable allocator that largely avoids false sharing and is memory efficient. Hoard is the first allocator to simultaneously solve the above problems. Hoard combines one global heap and per-processor heaps with a novel discipline that provably bounds memory consumption and has very low synchronization costs in the common case. Our results on eleven programs demonstrate that Hoard yields low average fragmentation and improves overall program performance over the standard Solaris allocator by up to a factor of 60 on 14 processors, and up to a factor of 18 over the next best allocator we tested.